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Abstract
Using first-principles calculation, we investigate systematically the properties of ZrNi2Ga with
fcc L21 Heusler structure, including the electronic structure, phonon dispersion,
electron–phonon interaction and thermodynamics. The calculated electron–phonon coupling
constant λ and the logarithmically averaged frequency 〈ω〉log are 0.747 and 68.48 cm−1,
respectively, giving the superconducting transition temperature Tc = 3.15 K according to the
Allen–Dynes formula. It is in good agreement with the corresponding experimental Tc and
ZrNi2Ga therefore can be explained as a conventional phonon-mediated superconductor.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The Heusler structure with formula AB2Z (A and B are
transition metals, Z is an sp element) is considered to be one
of the prototypes of half-metallic ferromagnets (HFM) [1, 2].
It has attracted much attention from both experimental and
theoretical communities in the past decades, since HFM are
characterized by possessing unit spin polarization (P = 1)
due to the fact that they are metallic for one spin and
semiconducting for another spin. It has promising uses
in spintronics [3, 4]. Meanwhile, a few Heusler structure
compounds containing rare earth metals (i.e. A is a rare
earth atom) [5–11] exhibit either magnetic order (for instance,
RPd2Sn with R = Tb, Dy, Ho) or superconductivity (RPd2Sn
with R = Tm, Lu) with Tc less than 3.5 K. Also, the coexistence
of superconductivity and magnetism was found in YbPd2Sn [6]
and ErPd2Sn [7]. It was generally believed that the magnetism
originated from the rare earth sublattice and superconductivity
came from the transition-metal sublattice for this class of
compounds [9]. However, exchange interaction between f-
electrons of the rare earth and d-electrons of the transition atom
could have a dramatic influence on superconductivity. A large
exchange interaction would suppress the superconductivity

and a small exchange interaction might give rise to the
coexistence of superconductivity and magnetic order [10].
Superconductivity was also found in similar compounds with
A replaced by a transition-metal atom, such as YPd2Sn [12],
NbNi2Sn [13], NbNi2Al [14], ZrPd2Al and HfPd2Al [15]
with the highest Tc of 4.9 K in YPd2Sn. It was pointed out
that the superconductivity of ZrPd2Al and HfPd2Al could be
understood by the valence instability at the L point due to a
Van Hove singularity (VHS) [15].

Recently Winterlik et al reported a new rich-in-
Ni Heusler superconductor ZrNi2Ga [16] with Tc about
2.9 K. Their measurements showed that this compound
was in the paramagnetic state at low temperature. It
was the same as the situation in NbNi2Sn, NbNi2Al,
ZrPd2Al and HfPd2Al. Understanding the superconducting
mechanism of a new superconductor is always full of
interest. Theoretical calculations of electronic structure,
phonon structure and electron–phonon interaction can serve
as useful tools for us to gain a preliminary insight into the
superconductivity. Therefore, in this work we start from first-
principles calculation to get the superconducting mechanism
of ZrNi2Ga and to obtain a complete knowledge of the static
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Figure 1. The fcc L21 Heusler structure of ZrNi2Ga: the dotted and
solid lines highlight the Zr tetrahedron and Ga tetrahedron,
respectively, and the dashed lines highlight the cubic coordinates
of Ni.

electron-related and dynamic phonon-related properties of this
superconductor in its normal state.

This paper is organized as follows: the detailed
computational method is described in section 2, the results
and discussion of electronic structure, phonon structure as well
as electron–phonon interaction and thermodynamics properties
are given in section 3 and the conclusion is made in section 4.

2. Computational details

Our calculations are performed with density functional
theory (DFT) [17] and density functional perturbation theory
(DFPT) [18] for an accurate electronic structure and phonon
dispersion relationship, respectively. The full potential
linearized augmented plane wave (FP-LAPW) method within
the WIEN2K package [19] is used for electronic structure
calculation with a plane wave cutoff RMT Kmax = 8.5, muffin-
tin radii of 2.43 bohr, 2.43 bohr and 2.28 bohr for Zr, Ni
and Ga, respectively, and basis expansion up to l = 10. A
12×12×12 k-mesh is used for Brillouin zone integration with a
modified tetrahedron method [20] to guarantee the convergence
of total energy. For phonon dispersion and electron–
phonon interaction calculation, the plane wave pseudopotential
method implemented in the PWSCF package [21] is used and
optimized norm-conversing pseudopotentials [22] generated
from the OPIUM package [23] are adopted. The energy
cutoff is set to be 60 Ryd for the expansion of the electronic
wavefunction. A 12 × 12 × 12 k-mesh is used for Brillouin
zone integration to obtain the ground state and a 36×36×36 k-
mesh is used for double δ function integration in the Eliashberg
function calculation (see section 3.4) [24, 25], along with
a Methfessel–Paxton Gauss smearing [26] of 0.02 Ryd. A
4 × 4 × 4 q-mesh is used to compute the dynamical matrix
and then a Fourier interpolation is employed to obtain phonon
frequencies in the full Brillouin zone. For comparison, both
the local density approximation (LDA) and the generalized
gradient approximation (GGA) are employed to approximate
the exchange–correlation potential.

Figure 2. The calculated LDA equation of states for ZrNi2Ga.

Table 1. Calculated lattice parameter a0 (au) and bulk modulus B0

(kbar). The experiment lattice constant (Exp.) is also given for
comparison.

WIEN2K PWSCF

LDA GGA LDA GGA Exp.

a0 11.295 11.560 11.441 11.707 11.524
B0 1817 1535 1815 1496

3. Results and discussion

3.1. Structure properties

ZrNi2Ga crystallizes in an fcc L21 Heusler structure (of Fm3̄m
symmetry) depicted in figure 1. Zr atoms, Ga atoms and
Ni atoms occupy the 4a(0, 0, 0), 4b( 1

2 ,
1
2 , 1

2 ) and 8c( 1
4 ,

1
4 ,

1
4 )

Wyckoff positions, respectively. Both Ga atom and Zr atom are
coordinated by eight Ni atoms, every Ni atom is surrounded
by four Zr atoms in the Zr tetrahedron and four Ga atoms
in the Ga tetrahedron. The theoretical equilibrium lattice
parameter a0 and bulk modulus B0 are summarized in table 1.
In figure 2, we present the calculated LDA equation of states
of ZrNi2Ga with the WIEN2K package. The equilibrium
lattice parameter and bulk modulus are obtained by fitting the
total energy versus lattice constant points to a Murnaghan-
state equation [27]. The optimized lattice parameter from
GGA is slightly larger than the experimental lattice parameter,
while the corresponding lattice parameter from LDA is slightly
smaller than the experimental lattice parameter, both of which
are typical behaviors in DFT calculations. In the following
sections, all our results are presented for the theoretical
equilibrium geometry from LDA.

3.2. Electronic structure

To have an explicit understanding of the interaction among
different orbitals of atoms, we first show the total and projected
density of states (DOS) of ZrNi2Ga in figure 3.1 Obviously,
contributions to DOS from −4 to 4 eV are mainly from Zr

1 Electronic structure from PWSCF is very close to that from WIEN2K, which
demonstrates that the pseudopotentials used in our work are accurate and have
satisfactory transferability. Here we thus only show the electronic structure
from WIEN2K.
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Figure 3. The calculated LDA total and projected electron density of states (Fermi level is located at energy = 0 eV).

Figure 4. The calculated band structures with projection to (a) Ni-eg states and to (b) Ni-t2g states, shown by fat bands (Fermi level is located
at energy = 0 eV).

3d states and Ni 3d states, but other terms are much smaller.
In this energy range the Ni-eg states and the Ni-t2g states are
not separated from each other as expected, but instead they
have significant overlap and there are more eg states above
the Fermi energy. Usually an undistorted tetrahedron crystal
field splits five degenerated d-orbitals into low-lying twofold eg

states and up-lying threefold t2g states. However, in ZrNi2Ga
every Ni atom is surrounded by two sets of tetrahedra occupied
by Zr atoms and Ga atoms, respectively, as mentioned in
section 3.1. Therefore the splitting effects on Ni 3d orbitals
are intertwined, which are naturally different from traditional
predictions. The Fermi energy (DOS at Fermi energy is

3.25 states/cell/eV) is located very near to a VHS. This may
result in a probable Stoner instability, which might bring the
system to be ferromagnetic, but our calculation has verified
that an initial magnetic calculation will eventually converge to
the non-magnetic ground state. In addition, between −7.3 and
−6.0 eV there exists a gap which is believed to be a typical
behavior of Heusler compounds [15].

In figure 4, we show the calculated band structure
along several high symmetry directions. Narrow bands with
projections to Ni-eg states and Ni-t2g states in figures 4(a)
and (b) demonstrate clearly that the Ni d-orbital splitting is
very complicated, different from the result induced by a simple

3
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Table 2. Comparison of the frequencies (cm−1) at X and � with LDA and GGA.

X Eu(1) A2u(1) B1u Eu(2) Eg A1g A2u(2) Eu

LDA 74.9 129.4 140.0 142.3 145.2 156.7 223.4 229.6
GGA 75.5 125.8 135.5 137.4 140.0 153.3 209.6 216.9

� T1u(1) T2g T1u(2) T1u(3)

LDA 0.0 92.8 185.9 215.9
GGA 0.0 95.5 178.5 204.2

Figure 5. The calculated Fermi surfaces (FSs) of ZrNi2Ga.

tetrahedron crystal field. At the same time, there are three
bands cutting across the Fermi energy: two of them show
almost no dispersion around the L point, where the band energy
stays above but quite close to the Fermi energy, resulting in a
VHS near the Fermi energy as discussed above.

The topology of a Fermi surface (FS) is an important
factor to evaluate the mechanism of superconductivity and
transport properties of metallic systems, in both of which
phonon-mediated scattering of electrons may play an important
role. Moreover, the electron–phonon interaction is usually very
sensitive to the shape of FS [24, 25, 28]. Therefore, we next
show the calculated FSs of ZrNi2Ga in figure 5. The FSs
consist of three parts, corresponding to the three bands (as
shown in figure 4) crossing the Fermi energy.

3.3. Phonon dispersion

In this section, we focus on its vibrational properties at the
equilibrium lattice of 11.441 au within LDA. The phonon
band structure and the corresponding phonon density of
states (PHDOS) are obtained, as shown in figures 6 and 7,
respectively. There are 12 phonon branches in the full phonon
dispersion since the unit cell consists of four atoms which
give rise to three acoustic and nine optic phonon branches.
The low-lying nine branches below 200 cm−1 are separated
from the up-lying three branches by a gap of about 5 cm−1.
Also, all phonon modes exhibit positive frequencies, strongly
suggesting that the optimized ZrNi2Ga lattice is dynamically
stable. We can therefore expect that at the optimized geometry
ZrNi2Ga lies at least in its local minimum of energy. For
comparison, we also carry out the calculation of the phonon
band structure with GGA at the corresponding optimized
lattice constant 11.707 au. The frequencies calculated from
LDA and GGA are summarized in table 2 for X and �. In
figure 7, we show both the total and atom-projected phonon
DOS. The main contribution to phonon density states (below
160 cm−1) comes from Ni vibrational modes. The contribution
from Zr increases rapidly at higher energy (above 205 cm−1)

Figure 6. The calculated phonon dispersion of ZrNi2Ga.

Figure 7. The calculated phonon total and atom-projected density of
states of ZrNi2Ga.

and is very small at lower energy (below 205 cm−1) in spite
of the heaviest mass of Zr in the three atom species. It
can be naively expected that the strong vibrations of Ni may
bring about strong electron–phonon interaction, which will be
discussed in the following.

3.4. Electron–phonon interaction

After getting the electronic structure of ZrNi2Ga from static
total energy calculations and dynamical lattice properties from
DFPT, we will move onto the discussion of the interaction
between electrons and phonons. The electron–phonon

4
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coupling (EPC) constant (λ) is usually extracted from the
Eliashberg function (α2 F(ω)) which can be used to determine
the Tc of a conventional phonon-mediated superconductor. For
clarity, these quantities are expressed as the following [25, 29]:

α2 F(ω) = 1

2π N(εF )

∑

qν

γqν

ωqν

δ(ω − ωqν) (1)

γqν = 2πωqν

∑

k j j ′
|gqν

k+q j ′,k j |2δ(εk j − εF)δ(εk+q j ′ − εF ) (2)

where gqν,i j
k+q,k is defined as

gqν, j ′ j
k+q,k =

∑

R,ν

ηqν(R, ν)√
2MRωqν

〈k + q, j ′|δVeff

δRν

|k, j〉. (3)

The electron–phonon coupling constant λ is expressed in
terms of the Eliashberg function:

λ = 2
∫

dω

ω
α2 F(ω)

=
∫

dω λ(ω). (4)

Here, λ(ω) = 2α2 F(ω)

ω
.

From the calculated λ, Tc is estimated using the Allen–
Dynes formula [30]:

Tc = 〈ω〉log

1.2
exp

[
− 1.04(1 + λ)

λ − μ∗(1 + 0.62λ)

]
(5)

where the logarithmically averaged frequency 〈ω〉log is defined
as

〈ω〉log = exp

[
2

λ

∫ ωmax

0
α2 F(ω)

ln(ω)

ω
dω

]
. (6)

We show the calculated α2 F(ω) in figure 8. The shape
of α2 F(ω) (on the left of figure 8(a)) exhibits remarkable
variation (below 200 cm−1) from that of PHDOS, while at
high energy (above 200 cm−1) the shape is already determined
by the corresponding shape of PHDOS. This demonstrates
that the phonon modes with lower energy (below 200 cm−1)
are more involved in the process of scattering of electrons
than the phonon modes with higher energy. It is noteworthy
that phonons with different energies almost make comparable
contributions to α2 F(ω). However, the situation of MgB2 [31]
is very different: there are only two narrow peaks in
α2 F(ω) predicting that only a few phonon modes have strong
coupling with electrons while other modes gives much smaller
contributions to the coupling. Mode resolved α2 F(ω) in
figure 8(b) further shows that at lower energy each mode
(three acoustic modes) makes a relatively larger contribution to
α2 F(ω) than the others. λ (integration of λ(ω)) characterizes
the magnitude of correction of several physical properties due
to the electron–phonon many-body interaction [32], such as
quasi-particle energy, electronic heat capacity, effective mass,
etc. Thus on the right of figure 8(a) we also show λ(ω) as a
function of phonon frequency.

With equation (4), the calculated λ is 0.747, showing
that the coupling strength between electrons and phonons in

Figure 8. (a) The calculated Eliashberg function α2 F(ω) and λ(ω)
(see equation (4)); (b) phonon mode resolved Eliashberg function
α2 F(ω): mode-1 to mode-12 represent 12 phonon modes from low
energy to high energy (see figure 6).

ZrNi2Ga is strong, and 〈ω〉log is found to be 68.48 cm−1

using equation (6). Tc is 3.15 K when choosing the screened
Coulomb pseudopotential parameter μ∗ to be 0.13 which lies
in the typical range of approximated μ∗. The calculated Tc

agrees well with 2.9 K [16] measured in previous experiments.
For a clear understanding of the dependence of Tc on μ∗, we
show additionally the curve of Tc versus μ∗ in figure 9. It
is found that Tc lies in the range of 3.99–2.62 K when μ∗
is in the typical range 0.10–0.15. This further demonstrates
that the superconducting behavior of ZrNi2Ga originates from
electron–phonon coupling.

3.5. Thermodynamic properties

From the discussion above, we can conclude that in ZrNi2Ga
phonon scattering of electrons plays a significant role in the
transition from the normal state to the superconducting state.
To have a more comprehensive insight into the influence of
phonons exerted on ZrNi2Ga, we investigate the contribution
of phonons to its thermodynamics properties, assuming it
is in the normal state. In figure 10, we show the phonon
contribution to internal energy �E , Helmholtz free energy
�F , constant-volume specific heat �Cv, along with entropy S,
as a function of temperature in the framework of the harmonic

5
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Figure 9. The superconducting transition temperature Tc as a
function of the screened Coulomb pseudopotential parameter μ∗.

approximation. These quantities are defined as follows [33]:

�E = 3nNh̄

2

∫
ω coth

(
h̄ω

2kBT

)
g(ω) dω (7)

�F = 3nNkBT
∫

ln

{
2 sinh

(
h̄ω

2kBT

)}
g(ω) dω (8)

Cv = 3nNkB

∫ (
h̄ω

2kBT

)2

csch2

(
h̄ω

2kBT

)
g(ω) dω (9)

S = 3nNkB

∫ [
h̄ω

2kBT
coth

(
h̄ω

2kBT

)

− ln

{
2 sinh

(
h̄ω

2kBT

)}]
g(ω) dω (10)

where n is the number of atoms in the unit cell, N is the
number of unit cells, kB = 1.38 × 10−23 J K−1 and g(ω) is
the PHDOS. The zero-point vibration is also taken into account
such that �E and �F do not vanish at T = 0 K but both are
10.78 kJ mol−1. �Cv increases rapidly in the low temperature
region (below 100 K) and almost approach a constant in the
high temperature region (above 200 K). Such behavior is in
good agreement with that of �Cv stated in Debye specific heat
theory, which points out that �Cv satisfies a T 3 law in the low
temperature limit and that it is almost a constant 3n R in the
high temperature limit, where R = 8.314 J mol−1 K−1 is the
ideal gas constant. At 300 K, �Cv is already 11.446R which
deviates a little from the high temperature limit of 12R.

4. Summary

Using first-principles calculation, we investigate systemati-
cally the properties of ZrNi2Ga with an fcc L21 Heusler struc-
ture, including the electronic structure and phonon dispersion
as well as the electron–phonon interaction and thermodynam-
ics properties. For the electronic structure, the states around
the Fermi energy are found to be dominated by Ni 3d-orbitals
which are split by the combined crystal field from the Ga
tetrahedron and Zr tetrahedron. The FSs resulting from three

Figure 10. The calculated �E (a), �F (b), along with �Cv (c) and entropy S (d) as a function of temperature.
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bands cutting across the Fermi energy are also shown. Phonon
dispersion calculation shows that the optimized structure of
ZrNi2Ga is in dynamic stability; Zr has strong vibration in
the high energy region and the relatively low energy region
is dominated by the vibration of Ni. Furthermore, α2 F(ω)

is obtained from electron–phonon interaction calculation. The
deviation of the shape of α2 F(ω) from that of PHDOS sug-
gests that the phonons with lower energy (below 200 cm−1)
are more involved in the process of scattering of electrons than
the phonons with higher energy. The calculated λ is 0.747, in-
dicating the strong interaction between electron and phonon in
ZrNi2Ga. The estimated Tc from the Allen–Dynes formula is
3.15 K when choosing μ∗ to be 0.13. This calculated Tc is in
good agreement with the experimental counterpart. It means
that ZrNi2Ga is a conventional phonon-mediated superconduc-
tor. In addition, the �E , �F , �Cv and S from the phonon
contribution are also derived in the framework of the harmonic
approximation.
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